5 Causes of Hypoxemia:
(numbered in order of what’s most common)

1. V/Q mismatch (95%)
 (not extreme)
 →Airway dx:
 →Asthma, COPD
 →Vascular (i.e. PE)
 →Alveolar:
 →Pneumonia, edema

2. Hypoventilation
 →low RR, low V_T, or high V_D
 →Result: High PaCO2
 (>> 40mmHg)

3. Right-to-Left Shunt
 (V<<<Q; some blood perfusing unventilated regions. Ventilated blood cannot further ↑ O2 content (Hgb already 100% saturated), so 100% doesn’t help)

4. Thickened diffusion barrier
 (RARE at rest, may be problematic only during exertion - ↓ RBC transit time)
 →Interstitial Lung Disease (i.e. Asbestosis)
 →Alveolar Disease
 →Pulmonary Vascular Disease

5. Low inspired ppO2
 (FiO2 ↓ at higher altitude)
 →Lowers P_AO2 AND PaO2!
 (RARE)

Note: V/Q mismatch happens in normal lungs to a small degree:

- Damaged Lung Structure (more dead space; ↑V_D)
 →Status asthmaticus (advanced asthma pt unresponsive to SABAs)
 →Advanced COPD

- Central
 →Drugs (i.e. morphine)
 →Coma
 →Hypothyroidism

- Chest Wall disorder
 →Obesity
 →Kypho-scoliosis
 →Neuro-muscular dx

Normal A-a Gradient (<15mmHg)
(Normal Gas Exchange)

High A-a Gradient (>15mmHg)
(Bad gas exchange: less O2 transferred from alveoli into blood)

Improves w/ 100% O2

Does NOT improve w/ 100% O2

Low inspired ppO2
(FiO2 ↓ at higher altitude)

100% O2

5. Low inspired ppO2
(FiO2 ↓ at higher altitude)

1. V/Q mismatch (95%)
 (not extreme)
 →Airway dx:
 →Asthma, COPD
 →Vascular (i.e. PE)
 →Alveolar:
 →Pneumonia, edema

2. Hypoventilation
 →low RR, low V_T, or high V_D
 →Result: High PaCO2
 (>> 40mmHg)

3. Right-to-Left Shunt
 (V<<<Q; some blood perfusing unventilated regions. Ventilated blood cannot further ↑ O2 content (Hgb already 100% saturated), so 100% doesn’t help)

4. Thickened diffusion barrier
 (RARE at rest, may be problematic only during exertion - ↓ RBC transit time)
 →Interstitial Lung Disease (i.e. Asbestosis)
 →Alveolar Disease
 →Pulmonary Vascular Disease

5. Low inspired ppO2
(FiO2 ↓ at higher altitude)

1. V/Q mismatch (95%)
 (not extreme)
 →Airway dx:
 →Asthma, COPD
 →Vascular (i.e. PE)
 →Alveolar:
 →Pneumonia, edema

2. Hypoventilation
 →low RR, low V_T, or high V_D
 →Result: High PaCO2
 (>> 40mmHg)

3. Right-to-Left Shunt
 (V<<<Q; some blood perfusing unventilated regions. Ventilated blood cannot further ↑ O2 content (Hgb already 100% saturated), so 100% doesn’t help)

4. Thickened diffusion barrier
 (RARE at rest, may be problematic only during exertion - ↓ RBC transit time)
 →Interstitial Lung Disease (i.e. Asbestosis)
 →Alveolar Disease
 →Pulmonary Vascular Disease

5. Low inspired ppO2
(FiO2 ↓ at higher altitude)

1. V/Q mismatch (95%)
 (not extreme)
 →Airway dx:
 →Asthma, COPD
 →Vascular (i.e. PE)
 →Alveolar:
 →Pneumonia, edema

2. Hypoventilation
 →low RR, low V_T, or high V_D
 →Result: High PaCO2
 (>> 40mmHg)

3. Right-to-Left Shunt
 (V<<<Q; some blood perfusing unventilated regions. Ventilated blood cannot further ↑ O2 content (Hgb already 100% saturated), so 100% doesn’t help)

4. Thickened diffusion barrier
 (RARE at rest, may be problematic only during exertion - ↓ RBC transit time)
 →Interstitial Lung Disease (i.e. Asbestosis)
 →Alveolar Disease
 →Pulmonary Vascular Disease

5. Low inspired ppO2
(FiO2 ↓ at higher altitude)

1. V/Q mismatch (95%)
 (not extreme)
 →Airway dx:
 →Asthma, COPD
 →Vascular (i.e. PE)
 →Alveolar:
 →Pneumonia, edema

2. Hypoventilation
 →low RR, low V_T, or high V_D
 →Result: High PaCO2
 (>> 40mmHg)

3. Right-to-Left Shunt
 (V<<<Q; some blood perfusing unventilated regions. Ventilated blood cannot further ↑ O2 content (Hgb already 100% saturated), so 100% doesn’t help)

4. Thickened diffusion barrier
 (RARE at rest, may be problematic only during exertion - ↓ RBC transit time)
 →Interstitial Lung Disease (i.e. Asbestosis)
 →Alveolar Disease
 →Pulmonary Vascular Disease

5. Low inspired ppO2
(FiO2 ↓ at higher altitude)